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1. INTRODUCTION

Let E c iCm be compact. We wish to interpolate f E C(E) at points in E·
by a polynomial of degree n. There being Nn := (n;;,m) monomials of degree
at most n, this requires N n interpolation points, Xi E E. We will often
abbreviate N n= N. Let ml(x), m2(x), ..., mN(x) be the appropriate
monomials. We then desire coefficients, Ci , 1~ i ~ N, such that
Pn(x) := L.f"= 1 c;m;(x) has the property that Pn(x;) = f(x;), 1~ i ~ N. The
vector c may be expressed as the solution of a matrix equation as follows.
Let M n represent the matrix [mix;)] EiCNxN and f the vector given by
f;= f(xJ We must have

Vn(Xl> x2 , ..., x N) := det M n is known as the Vandermonde determinant
of the system. The interpolation problem has a unique solution if and only
if Vn(Xl> x 2 , ... , xN) # O. An equivalent geometrical condition is that the
points do not lie on an algebraic surface of degree n.

Now for a set of points for which V # 0 we may form the Lagrange
polynomials, l;(x), defined by the conditions

1 ~i, j~N.

The interpolating polynomial may then be expressed as

N

Pn(x) = L f(x;) l;(x).
;~1

An(x) := L.t'= 1 IUx)1 is known as the Lebesgue function of the inter­
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polation. It has the property that II P nil E:(; II A n II E II f II E and that if p-: is the
best uniform approximation to f EC(E) on E, then

(1.1 )

For this reason it is desirable to find points for which II A n II E is as small as
possible. In one variable, for E = [a, b J, this problem is classical and the
optmal interpolation points have been characterized by Kilgore [6J and
deBoor and Pinkus [3]. From this characterization it follows that, for the
optimal points, IIAnl1 = O(1og n).

In several variables the characterization of the optimal points is evidently
very difficult. A reasonable first step is to seek points for which the
Lebesgue function grows polynomially in the sense that limn ~ co IIAnll}/n = 1.
Now, we may express

Hence, if the points XI' ... , X N maximize IVI as a function on EN, we have,
for xEE, Il;(x)l:(; 1 and consequently IIAnIIE:(;N and it is therefore of
polynomial growth. This is almost surely a very pessimistic bound. In one
variable, Sundermann [9] has shown that, in fact, the growth is
logarithmic and experiments by Luttman and RivHn [7J indicate that for
the interval [ -1, 1], the Lebesgue function for the points which maximize
the Vandermonde determinant is slightly smaller than that for the near
optimal Chebyshev points.

Regardless, for any E this gives one example of points with the Lebesgue
function of polynomial growth. In one variable many other examples are
also known. For example, the roots of polynomials orthogonal with respect
to a weighted L 2 inner product have this property. In contrast, little else
seems to be known about the several variables case.

In this paper we restrict our attention to the case of E =B 2 =
{x E ~2: Ixi :(; 1}, the unit disk in ~2. The number of points and monomials
is then N=(n!2). We will show that for a set of points in B2 having the
Lebesgue function of polynomial growth,

lim V~/n(n+ l)(n+2) = (2e)-1/2.
n~ co

In one variable (see Goluzin [4]), the analogue of this limit yields what is
known as the Chebyshev constant of E. For E = [ -1, 1] it is !, a reflection
of the fact that the Chebyshev polynomials have norm 2- (n - I). Of special
interest is the fact that (2e) -1/2 <!.
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2. POINTS FOR WHICH THE LEBESGUE FUNCTION

GROWS POLYNOMIALLY

If EeC is compact, then limn-+ooinfc{llzn-LZ:6Ckzklle}l/n exists and
is known as the Chebyshev constant of E, r(E). In the classical theory of
transfinite diameter it is shown that if z~n), z~n), ..., z~nll are the points in E
which maximize the Vandermonde determinant, then

/(
n + 2)

I· IV( (n) (n) )1 1
2 - (E)1m z 1 , ... , Z n + 1 - r .

n -+ 00

The proofs of these facts and others may, for instance, be found in
Goluzin [4]. In the case of E = [ -1, 1J, it is known that r(E) = !.

More recently, Zaharajuta [10J has given a generalization of the above
to the case of several variables. Suppose that the monomials are given
explicitly, in multinomial notation, as m;(x) := xk(i), and that the ordering
is such that i~j= Ik(i)1 ~ Ik(j)I; i.e., the ordering is consistent with the
degree. Let E e cm be compact and set

and

If T is the standard (m -1)-simplex,

T:= {OE ~m: f 8i = 1, 8;~O, 1~i~m},
o ;=1

for 0 E T let

r(O):= lim sup r j .
j-t 00

k(j)/Ik(j)l -+ 0

For 0 in the interior of T, Zaharjuta shows that the actual limit above
exists. r(O) is called the Chebyshev constant of E for the direction O.

Now, in the case of one variable, the (ni 2
) used in the exponent of the

limit defining transfinite diameter is actually the degree of homogeneity of
V(x 1> ... , X n + I) considered as an (n + 1)-variable polynomial. In several
variables this degree of homogeneity may be computed to be

(
n+m)

hn :=m m+ 1 .
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THEOREM 2.1 (Zaharjuta [10]). Let EcC m be compact. Suppose that
aln), ain ), ... , a~) E E maximize IV(x[, ..., xN)1 over EN. Then

lim IV(aln), ...,a~))I!/hn=exp{ l1(T)f log r(9) dvl.
n~ 00 VO T J

As stated, the theorem is for the points which maximize the
Vandermonde determinant but because of the forgiving nature of the
exponent, Ijh n , even more is true.

COROLLARY 2.2. Let E c Cm be compact. Suppose that xin), ..., x~) is an
array ofpoints for which the Lebesgue function has polynomial growth. Then

lim IV(Xln), ..., x~»)I!/hn = exp {-11() flOg r(9) dV}.
n~ 00 vo T T

Proof For simplicity write An = IIAn(x)IIE' Suppose that aln), ..., a~) are
the points which maximize the Vandermonde determinant. We may regard
V(aln), ..., a~)) as a polynomial in the first variable, aln ). Hence

N

V(a (n) a(n») = " V(x(n) a(n) a(n») !.(a(n»)1 , ••• , N L...J j' 2 , ••• , N ] 1 ,

j=!

where the lj are the Lagrange polynomials associated with interpolation at
the points xjn). Therefore,

IV(a (n) a(n»)1 ~ A IV( (n) (n) (n»)11 , ... , N "" n max Xj ' a 2 , ... , aN .
l~j~N

By relabelling if necessary we assume that

We now consider V(xln), ain), ..., a~») as a polynomial in ain) and, after a
possible further relabelling, obtain,

Continuing in this manner we see that

IV(aln), ..., a~))1 ~ A;; IV(xln), xin), ..., x~))I·

As the points ajn) maximize IVI, we also have that

IV(xln), ..., x~))1 ~ IV(aln), ..., a~»)1

and therefore

A;NI V(aln), ..., a~»)1 ~ IV(xln), ..., x~»)1 ~ IV(aln ), ..., a~»)I·
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But N/hn= (n;;:,m)/{m(;:'~"i)} = (m + 1)/(mn) and thus, since by assumption
A~/n ~ 1, (A;N)l/hn~ 1. The result follows. I

Our main result is to give an explicit value for the limit of the
determinants in the case of the disk in ~2. We will see that it is (2e)-1/2.
Note that this is less than the one variable value of l Now let
Bm := {x E ~m: Ixl ::::; 1} be the unit ball in ~m and let Sm-l be its
boundary. Any f E C(Bm ) may also be regarded as a function on the sphere
Smc~m+l. Explicitly, evaluatef(x,xm + 1 )=f(x). We set

Here W m is the surface area of Sm' Our goal is to show that in the
definition of r(9) we may replace the uniform norm by this more tractable
2-norm. (Actually more general norms may be used but this is not needed
here.)

We begin by showing that 11·112 and 11·11 Bm are polynomially (in the
degree) equivalent on the polynomials of degree at most n.

LEMMA 2.3. There are constants cm' depending only on m, such that if p
is a polynomial of degree at most n,

Proof The first inequality is straightforward. For the second, consider
p as a function on Sm and express p = Lk=O ak Yk where Yk is the restric­
tion to Sm of a homogeneous, harmonic polynomial of degree k (i.e., a
spherical harmonic) that is normalized so that II Yk l1 2 = 1. It is known that
SSm Yk Yj dO' = 0 if k -=f j. Hence Ilpll~ = Lk~O a~. Now also

IIPI11m=~~ Ik~O akYk(X)I

Z

::::;C~O a~) ~~:k~O n(x).

But from [8, Cor. 2.9, p. 144] it follows that

yz & _1_ m+ 2k - 1(m + k - 2) & d k m - 1

k'" W m k k-1 '" m

for some constant dm . Hence

for some constant Cm and the result follows. I
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If Pi is the best uniform approximation to mi on Em and qi is the best 11·112
approximation on Em to mi by polynomials of the form L:;: t cjmj , then

and

Therefore,

(2.1 )

We have used the abbreviation, n = Ik(i)I. Note that as n ~ 00,
c1j,n nm/(2n) ~ 1.

But, the error in best 2-norm approximation, K; in this case, may be
expressed as the ratio of Gram determinants. From the above it is,
therefore, not surprising that Zaharjuta's proof may be modified to yield:

THEOREM 2.4. Let Gn be the Gram determinant of all monomials of
degree at most n with respect to the inner product

(1, g) :=_1 f fg da.
W m 3m

Then

Proof Let GUl denote the Gram determinant of monomials
m\> m 2 , .•. , mi' Then

Hence, by (2.1),
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and consequently,

LEN BOS

Setting

and

(
Nn )1/(Nn-Nn-il

.. (0) '= '" r."'n· ~ 1

i=Nn-l+l

we have, as Go = 1,

(c,:;;2 n - m)N
n
-l (1)1 (riO»)'kY ~Gn~(1)1 (riO)YkY·

Therefore,

But, as before,

and, hence, (c,:;;2 n - m )(Nn -l)/(2hn)-+ 1 as n-+ 00. We now rejoin Zaharjuta's
proof in progress and we are done. I

We now compute Gn explicitly for the case of m = 2.

THEOREM 2.5. Let Gn be the Gram matrix of Theorem 2.4 with m = 2.
Then

1 2n(n+l)

Gn= Gn- 1 (2n + It+ 1 (2

n

n)2(n+ 1)

n even,

{
(n-l)/2(n+2k+1)!( n )}2

x kI]O 2k + 1 2k + 1 '
n odd.
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Proof The cases n even and n odd are only slighty different. We give
the n even case only.

We make use of the spherical harmonics:

Pn(cos(e)),

sinm(e) p~m)(cos(e)) cos(m<p),

sinm(e) p~m)(cos(e)) sin(m<p),

1~m~n,

1~m~n.

Here Pn is the nth Legendre polynomial and, in spherical coordinates,
z = cos(e), x = sin(e) cos(<p), and y = sin(e) sin(<p). If n - m is even, each of
these is even in z and hence, by substituting zZ = 1 - x Z- yZ, we obtain
n + 1 bivariate polynomials of degree n which are orthogonal both to each
other and all polynomials of lower degree with respect to the inner product
of consideration.

Now if {qj, qz, "', qN} is the set of polynomials so obtained, there
is a matrix T E [RN x N giving the transition from the monomials
{mj,mZ, ...,mN}, i.€., q=Tm. Further, if Qn is the (diagonal) Gram
determinant of the q/s then it is easy to see that

But clearly T has the form

or (2.2)

(2.3 )

where T i E [R (i + j) x (i + j) gives the degree components of the degree i
spherical harmonics.

As is well known,

f P~(cos(e)) d(J = 4n/(2n + 1),
52

f {. () }Z 2n (n + m)!
smm(e)Pnm(cos(e))cos(m<p) d(J=(2 1)( _ )"

52 n+ n m.

f { . () e }Z 2n (n+m)!
smm(e)Pnm(cos( ))cos(m<p) d(J=-(2-1-) ( )1'

"52 11 + n-m.

The degree n contribution to the diagonal determinant, Qn, is the product
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of these over 1~ m ~ n, n - m even, i.e., as we assume n even,
In = 2, 4, 6, ..., n. This product is easily computed to be

1 1 {n12 }2
(2n + l)n+! 2n }!! (n +2k)!j(n - 2k)! .

Combining (2.2) with (2.3) and (2.4) we see that

(2.4)

(2.5)

and it remains to compute ITnl.
Recall that Tn E lR(n + !) x (n + !) is the matrix of the coefficients of the exact

degree n part of the degree n spherical harmonics with Z2 replaced by
1- x 2- y2. As the leading coefficient of Pn is (~)j2n, we have a
contribution of

(2.6)

The derivatives p~m) have the additional factor, n!j(n - m )!, in the leading
coefficient, giving an additional contribution to the determinant of

{
nl2 }2}!! n!j(n - 2k)! .

By Lemma 2.6, the determinant of what remains of the coefficients is

Combining (2.6) with (2.7) and (2.8), we have that

(
2n)n + ! { nl2 }2

ITnl =2~n(n+!)/2 n }!! n!j(n-2k)! .'

We now substitute this expression for ITnl into (2.5) and simplify. I

(2.7)

(2.8)

LEMMA 2.6. Let n be even. Let AnEIR(n+!)x(n+!) be the matrix of the
coefficients of the homogeneous polynomials

and

m = 0, 2, 4, ..., n,

m=2, 4, ..., n.

(2.9)

(2.10)
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Here x = sin(B) cos(cp), y = sin(B) sin(cp), and sin2(B) = x
2 + y2. Then

Idet Ani = 2n2
/
2

.

325

Proof First notice that the polynomials of (2.9) and (2.10) consist of
disjoint sets of monomials; i.e., (2.9) yields polynomials with the powers of
x and y both even while (2.10) yields polynomials with both powers odd.
Thus the determinant of An is the product of the determinants of En and en

where En E lR(n/2 + 1) x (n/2 + 1) is the matrix of the coefficients of the
polynomials (2.9) and en E lR(n/2) x (n/2) is the matrix of coefficients of the
polynomials (2.10).

Consider first En" Letting T m(x) := LJ'~20 t j x
2j denote the mth Chebyshev

polynomial, we may write

(x2 + y2)(n-m)/2 sinm(B) cos(mcp)

= (x 2 + y2 )(n - m)/2 sinm(B) Tm(cos(cp))

m/2
= (x2 + y2 )(n -m)/2 I t j cos2j( cp) sin2j

( B) sinm- 2j ( 8)
j=O

m/2
= (x2 + y2)(n-m)/2 I tj x 2j(X2 + y2)(m-2j )/2

j=O

m/2
= L t j x 2j(X 2 + y2)(n-2j )/2

j=O

m/2
=(X2 +y2) I tjX2j(x2+y2)(n-2-2j)/2.

j=O

(2.11 )

(2.12)

We see that each polynomial is obtained from one of degree (n - 2) by
multiplying by (x2+ y2). The exception is the case m = n which does not
occur for lower degrees. Perhaps this is best illustrated by an example.

For n = 4 the polynomials are

m = 0 : x 4 +2X2
y 2 + y4

m=2: x 4 + _ y4

m = 4: x 4 _ 6X2
y 2 + y4

and for n = 6 they are

m = 0: x 6 + 3X4
y 2 + 3X2

y 4 + y6

m = 2: x 6 + X 4
y 2 _ X 2

y 4 _ y6

m = 4 : x 6 _ 5X4y 2 _ 5X 2y 4 + y6

m = 6: x 6 -15x4y 2 + 15x2y 4 _ y6.

(2.13 )
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Observe that the first three of (2.13) are those of (2.12) multiplied by
(x2+ y2). The last of (2.13) is new.

If we write the monomials in descending powers of x, we have the
matrices

[

1 3
1 1

B6 =
1 -5
1 -15

3

-1

-5
15

-~]1 .

-1

Because of (2.11), except for the last entry in columns 2 through nl2 of Bn,
each such interior column is the sum of the same column and the one
preceding it of Bn - 2 • Further, in each polynomial, the coefficient of x n is
Lillo tj = Tm(l) = cos(cos -1(1)) = 1 and the coefficient of yn is to = Tm(O) =
( -1 )mI2. Hence the first and last columns of the matrices Bn, for various n,
are simply extensions of each other.

By the above remarks we see that upon subtracting col 2 - colI,
col 3 - col 2, col 4 - col 3, ..., col(nl2 + 1) - col(n12 ), in this order, we have

l OJB :
det B = det n - 2 •
nO'

* r

where r = L:~'=+?)/2 (-1 )k- 1bnI2 + J.k' i.e., the alternating sum of the bottom
row of Bn • But the bottom row corresponds to the case m = n and therefore
consists of the coefficients of the polynomial

n/l
p(x, y) := I tjx

2j(X2+ y2 )(n - 2j)/2
j=O

and r is the alternating sum of the coefficients of p(x, y).
As P is homogeneous of degree n12,

nl2
r=p(i, 1)= L ti- 1)j(-1+1)(n-2j)/2

j=O

t 2n-1
= nl2 = .

Hence /det Bnl = 2n
-I Idet Bn_ 2/ and since an easy calculation reveals that

Idet B2 1 = 2, we see that Idet B n / = 2n2
/
4

•

An argument exactly analogous to the above shows also that
Idet enl = 2n2/4 and the result follows. I
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This explicit expression allows us to compute a numerical value for
limn -..co G~/hn. Note that in two dimensions hn = n(n + 1)(n + 2)/3.

THEOREM 2.6. Let Gn be the Gram determinant of Theorem 2.4 with
m=2. Then

lim G~/hn= 1/(2e).
n~ 00

Proof From Theorem 2.4 we know that the limit exists. There are two
cases: n even and n odd. Their analyses being similar we give the proof for
n even only.

Consider first the factor {n~/:! (n!lk)}2. Since we raise Gn to the
extremely forgiving power l/hn, it suffices to consider n~~l (nt k

). Now

1 fln (n+k) ~ I (n+k)!
~ =L ~ "k~l k k~! n.k.

which after some manipulation reduces to

~ n

(2n + 1) L: log(j) - (3n + 2) 2: log(j)
j=! j=l

2n n
- L: j log(j) + 2 L: j log(j).
j~ 1 j= 1

But by Euler's summation formula,

n 1L: log(j) = n log(n) - n + -log(n) + 0(1)
j~l 2

and

(2.14 )

(2.15)

n 1 -1 1 1L: j log(j) = -2 n 2 10g(n) +-4 n 2 + -2 n log(n) + -log(n) + O( 1). (2.16)
j=! 12

It follows from (2.14) that

n (n + k) ( 1)log }!! k = 210g(2)-2 n2 +O(nlog(n)).

640/56/3-7

(2.17)
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Second, consider {IT!Y: 1 UU }l. Again, it suffices to study ITZ= 1 (Z). But

log kDl G) = k~l log (n-:)! k!

=kt1 ttl log(j) - ~~~ log(j) - it1 109(j)},

which after some manipulation reduces to
n n

- (n + 1) L log(j) + 2 L j log(j).
i=l i~ 1

Using (2.15) and (2.16) we thus see that

n (n) 1log }]1 k = 2" n
l + O(n log(n)).

A similar calculation reveals that

(
2n)l(n+ 1)

log n =(4log(2))n(n+l)+O(nlog(n)).

Combining (2.17), (2.18), and (2.19) we see that

(2.18)

(2.19)

{
1 2

n
(n+1) {nil (n+2k)j( n )}l}

log (2n + 1)"+' (~r"+ "}!, 1.k 1.k

= -(I+log(2))nl +O(nlog(n)). (2.20)

But 3ln(n + l)(n + 2) L:k~ 1 k log(k) -+ 0 as n -+ 00. Therefore

1· 3 1 G 1· -3(1 +log2) ~ k l
1m 0 g n = 1m -,----'-..,-,-""""::'-:'-:- f...,

n~ 00 n(n + 1)(n + 2) n-+oo n(n + l)(n + 2) k~l

= -(1 +log(2)).

The taking of exponentials gives the result. I

We may summarize our results as follows.

THEOREM 2.7. Suppose that x~n), ..., x~) E Bl C ~l form an array ofpoints
for which the Lebesgue function has polynomial growth. Then

lim IV(x~n), ..., x~»)11Ihn = 1/~.
n -+ 00

This gives a specific numerical characteristic of points in the disk for
which the Lebesgue function has polynomial growth.
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